翻訳と辞書 |
Asymptotic curve : ウィキペディア英語版 | Asymptotic curve In the differential geometry of surfaces, an asymptotic curve is a curve always tangent to an asymptotic direction of the surface (where they exist). It is sometimes called an asymptotic line, although it need not be a line. ==Definitions== An asymptotic direction is one in which the normal curvature is zero. Which is to say: for a point on an asymptotic curve, take the plane which bears both the curve's tangent and the surface's normal at that point. The curve of intersection of the plane and the surface will have zero curvature at that point. Asymptotic directions can only occur when the Gaussian curvature is negative (or zero). There will be two asymptotic directions through every point with negative Gaussian curvature, these directions are bisected by the principal directions.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Asymptotic curve」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|